Face Retrieval using Frequency Decoded Local Descriptor

نویسنده

  • Shiv Ram Dubey
چکیده

The local descriptors have been the backbone of most of the computer vision problems. Most of the existing local descriptors are generated over the raw input images. In order to increase the discriminative power of the local descriptors, some researchers converted the raw image into multiple images with the help some high and low pass frequency filters, then the local descriptors are computed over each filtered image and finally concatenated into a single descriptor. By doing so, these approaches do not utilize the inter frequency relationship which causes the less improvement in the discriminative power of the descriptor that could be achieved. In this paper, this problem is solved by utilizing the decoder concept of multi-channel decoded local binary pattern over the multi-frequency patterns. A frequency decoded local binary pattern (FDLBP) is proposed with two decoders. Each decoder works with one low frequency pattern and two high frequency pattern. Finally, the descriptors from both decoders are concatenated to form the single descriptor. The face retrieval experiments are conducted over four benchmarks and challenging databases such as PaSC, LFW, PubFig, and ESSEX. The experimental results confirm the superiority of the FDLBP descriptor as compared to the state-of-the-art descriptors such as LBP, SOBEL LBP, BoF LBP, SVD S LBP, mdLBP, etc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Directional Relation Pattern for Unconstrained and Robust Face Retrieval

Face recognition is still a very demanding area of research. This problem becomes more challenging in unconstrained environment and in the presence of several variations like pose, illumination, expression, etc. Local descriptors are widely used for this task. The existing local descriptors are not able to utilize the wider local information to make the descriptor more discriminative. The wider...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

LDOP: Local Directional Order Pattern for Robust Face Retrieval

 Abstract— The local descriptors have gained wide range of attention due to their enhanced discriminative abilities. It has been proved that the consideration of multi-scale local neighborhood improves the performance of the descriptor, though at the cost of increased dimension. This paper proposes a novel method to construct a local descriptor using multi-scale neighborhood by finding the lo...

متن کامل

Local Neighborhood Intensity Pattern: A new texture feature descriptor for image retrieval

In this paper, a new texture descriptor based on the local neighborhood intensity difference is proposed for content based image retrieval (CBIR). For computation of texture features like Local Binary Pattern (LBP), the center pixel in a 3×3 window of an image is compared with all the remaining neighbors, one pixel at a time to generate a binary bit pattern. It ignores the effect of the adjacen...

متن کامل

Local Image Descriptor using VQ-SIFT for Image Retrieval

In this paper, we present local image descriptor using VQ-SIFT for more effective and efficient image retrieval. Instead of SIFT's weighted orientation histograms, we apply vector quantization (VQ) histogram as an alternate representation for SIFT features. Experimental results show that SIFT features using VQ-based local descriptors can achieve better image retrieval accuracy than the conventi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1709.06508  شماره 

صفحات  -

تاریخ انتشار 2017